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a b s t r a c t

The direct simulation Monte Carlo (DSMC) method for population balance modeling is
capable of retaining the history of each simulation particle and is thus able to deal with
multivariate properties in a simple and straightforward manner. As opposed to conven-
tional DSMC approaches that track equally weighted simulation particles, a differentially
weighted Monte Carlo method is extended to simulate two-component coagulation pro-
cesses and is thereby able to simulate the micromixing of the components. A new feature
of the method for this bivariate population balance modeling is that it is possible to specify
how the simulation particles are distributed over the compositional axis. This allows us to
obtain information about particles in those regions of the size and composition distribution
functions where the non-weighted MC methods place insufficient simulation particles to
obtain an inaccurate solution. The new feature results in lower statistical noise for simulat-
ing two-component coagulation, which is validated by using two-component coagulation
cases for which analytical solutions exist (a discrete process with sum kernel for initial
monodisperse populations and a process with constant kernel for initial polydisperse
populations).

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Multi-component coagulation1 is ubiquitous in a number of fields such as aerosol dynamics [1], polymerization [2],
granulation [3], nanoparticle synthesis [4], combustion [5], and atmospheric physics [6]. In this process, the aggregating
particles are often inhomogeneous in composition, and the compositional distribution affects the end-use properties of the
aggregates. In order to understand and control this coagulation process, it is therefore necessary to obtain the evolution of
the compositional distribution within aggregates of a given size. This study only considers a two-component and non-reactive
system. Although this is clearly the most basic case, it is nevertheless considered the most relevant, as the particles formed are
usually solids which do not react chemically. Spatially homogeneous two-component coagulation processes are described by
the following population balance equation (PBE) [7], which is an extension of Smoluchowski’s equation for one-component
coagulation,
. All rights reserved.
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where vx and vy are the volume of x-component and y-component within an aggregate having a total volume of vx + vy

respectively; n(vx,vy, t) is the number density function at time t such that n(vx,vy, t)dvxdvy represents the number concentra-
tion of particles in the size range of x-component, vx to vx + dvx, and the size range of y-component, vy to vy + dvy;
b vx;vy;v 0x;v 0y; t
� �

is the coagulation rate coefficient between one particle A of state (vx,vy) and another particle B of state
v 0x;v 0y
� �

. The two-component coagulation between particle A and B results in a new particle C of state vx þ v 0x;vy þ v 0y
� �

and the death of particle A and B.
The numerical solution of the two-component PBE still poses a number of difficulties due to the double integral and non-

linear behavior of the equation. Not many methods are available in the open literature, which is in sharp contrast with the
dozens of numerical methods for mono-component systems. Basically, it is possible to distinguish amongst methods of mul-
ti-component coagulation between deterministic methods, which directly calculate the double integral either through an
appropriate discretization scheme or by quadrature, and stochastic methods, which directly simulate the dynamic evolution
of a finite sample of particle population using Monte Carlo (MC) technique. Based on a deterministic method, Kim and Sein-
feld proposed the sectional method [8] and the finite element method [9] for simulating the evolution of aerosol size and
chemical composition distributions resulting from simultaneous coagulation and growth successively; McGraw and Wright
[10] extended the quadrature method of moments for aerosol dynamics simulation in multi-component systems; Vale and
McKenna [11] extended the fixed pivot technique of Kumar and Ramkrishna [12] to simulate two-component coagulation
processes; Alexopoulos and Kiparissides [13] also used the extended fixed pivot technique for solution of a bivariate PBE con-
sidering simultaneous coagulation and breakage; Qamar and Warnecke [14] extended a conservative finite volume approach
of Filbet and Laurencot [15] to determine the number density function of two-component aggregates. Generally, these deter-
ministic methods are computationally less demanding and can be coupled with solvers of computational fluid dynamics
(CFD) for the fields of continuous phase to simulate spatially-dependent multi-component coagulation. However, these
deterministic methods are formulated by complicated mathematical equations, especially when simulating more than
two internal variables of the particles such as the chemical composition, size, charge or surface area of aggregates, which
are necessary in the simulation of, for example, multi-component nanoparticle synthesis via the gas phase method at high
temperature. At the same time, the deterministic equation (1) cannot provide information regarding the innate fluctuations
for multi-component coagulation [16] and, more unfortunately, may not be valid at longer time periods, when only several
particles acquire a mass larger than the rest of the population [17] and complete coagulation occurs [16].

The stochastic methods, or the population balance-Monte Carlo (PB-MC) methods, have become increasingly popular in
the past two decades because computer technology (especially CPU and memory) is developing rapidly and, more impor-
tantly, the discrete and stochastic nature of the PB-MC methods is especially suited for particle dynamics, which is also dis-
crete and stochastic in nature. The PB-MC can be adopted for multivariate population balances (such as the two-component
coagulation in this study) in a simple and straightforward manner. Kruis et al. [4,18] adopted the stepwise constant volume
method to track the time evolution of multivariate systems including particle size, charge and component. Saliakas et al. [19]
also used the stepwise constant volume method to predict the dynamic evolution of the droplet/particle size distribution in
both non-reactive liquid–liquid dispersions and reactive liquid (solid)-liquid suspension polymerization systems. Matsoukas
et al. [20,21] used the constant number method to investigate the mixing and granulation of components. Sun et al. [22]
developed a time-driven PB-MC to capture both composition and size of particles undergoing simultaneous coagulation
and fast condensation, where particles are grouped into bins with moving boundaries according to their size. These PB-
MC methods (particle accounting algorithms in the nomenclature of Laurenzi et al. [16]) for multivariate systems are direct
and simple extensions of these corresponding monovariate PB-MC methods. The main numerical difficulties in these mul-
tivariate PB-MC methods are that the numerical operation increases linearly as the increment of internal variable number
(j), and the storage requirement is nearly proportional to j2 [16]. Laurenzi et al. [16] thus designed a special MC method
for multi-component coagulation processes using a chemical interpretation to define the state of an aggregating system
in terms of ‘‘aggregate species”. The so-called species accounting algorithm has remarkable performance in terms of compu-
tational efficiency and memory demand thanks to the use of the bookkeeping based on an ‘‘aggregation table”. Irizarry [23]
recently also viewed particles with size in a specified interval as pseudo chemical species and then constructed a jump Mar-
kov model that defines a set of non-standard reactions between pseudo-species (called random product channels). The
resulting event-driven MC, point ensemble Monte Carlo in Irizarry’s nomenclature, is capable of keeping the particle integ-
rity during simulation and describing multivariate particulate systems. The two aforementioned types of PB-MC methods
(species accounting algorithms in the nomenclature of Laurenzi et al. [16]), both of which adopt the stochastic simulation
algorithm for chemical kinetics [24], cut the computational requirement significantly, however, at the cost of very compli-
cated algorithms.

In fact, these available PB-MC methods for multivariate population balance modeling in the open literature track simu-
lation particles which are equally weighted. Even when millions of simulation particles are used in the equally weighted MC,
there may still be an insufficient number of simulation particles at the edges of the compositional distributions, which makes
it impossible to determine the compositional distributions in this area using MC. This becomes especially clear for multi-
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component systems because the distribution functions of each component within aggregates are nonisotropic. The effective
route is the differentially weighting scheme of simulation particles. Differentially weighted simulation particles can be spec-
ified to distribute as homogeneously as possible over high-dimensional joint space of internal variables, which will greatly
reduce statistical noise inherent to the MC method and determine full compositional distributions in multi-component coag-
ulation processes. We proposed a time-driven differentially weighted MC [25] and an event-driven differentially weighted
MC [26] for coagulation of mono-component particles successively. In this paper, the two differentially weighted MC are uni-
fied and the generalized MC is then directly extended to simulate two-component coagulation processes, where composi-
tion-dependent weighting schemes are designed to specify the distribution of simulation particles in composition. Ideal
cases in which analytical solutions exist are simulated to validate the performance of the MC.

2. The differentially weighted Monte Carlo method for two-component coagulation processes

2.1. Theoretical basis of the differentially weighted MC method

The concept of weighting simulation particles is widely utilized by MC to overcome the conflict between large numbers of
real particles and limited CPU speed and memory capacity. In differentially weighted MC, the weight of a simulation particle
i, wi, means the simulation particle i represents wi real particles having the same or similar internal variables (i.e., size, com-
ponent) as i. In order to use differentially weighted simulation particles, the coagulation rate between simulation particles
having different weights must be derived.

Since a simulation particle is a representative of some real particles having similar size, one naturally considers that, once
simulation particle i coagulates with another simulation particle j, each of the real particles represented by i or j undergoes a
real coagulation event with 100% probability, that is, each real particle from two coagulated simulation particles must coag-
ulate and coagulates only once. We can call the pre-established rule the full coagulation rule. On the basis of this rule, the total
coagulation rate of simulation particle i, Ci (with dimension m�3�s�1), is calculated as [27,28]:
Ci ¼
XNst

j¼1;i–j

Ci
ij ¼

1
V2

XNst

j¼1;i–j

bijwj
� �

; ð2Þ
where V is the volume of the simulated system; Nst is the total number of simulation particles in the system; wi and wj are
the private weights of particle i with volume of vi and particle j with volume of vj, respectively; bij is the coagulation kernel

between particle i and particle j, m3�s�1; Ci
ij is the coagulation rate of i for the i–j coagulation event, Ci

ij ¼ bijwj=V2. The time

interval of i di
ij

� �
is then 1= VCi

ij

� �
. It is worth mentioning that, for the equally weighted simulation particles, the total coag-

ulation rate of i is then Ci ¼ w
V2

PNst
j¼1;i–jbij, and especially, if one simulation particle represents one real particle

Ci ¼ 1
V2

PNst
j¼1;i–jbij. These formulas are consistent with those adopted by the stepwise constant volume method [29] and the

time-driven DSMC [30].
In the full coagulation rule, the number of real coagulation events for the i–j coagulation event is wi � wj. Since the total

number of real particles from i and j is (wi + wj), and one coagulation event is related to two particles, the mean number (X)
of real coagulation events per real particle from i or j is 2wiwj/(wi + wj). The average time interval per real particle from i, �di

ij, is

thus given by di
ij=X, i.e., 1= VXCi

ij

� �
. The mean coagulation rate of a real particle from i �hi

ij

� �
is then 1= V�di

ij

� �
¼ XCi

ij.

If the full coagulation rule is utilized to construct a jump Markov process for coagulation dynamics, we are faced with the
conceptual difficulty of imagining a coagulation event between two simulation particles having different weights. As for the
i–j coagulation where wi > wj, for example, real particles from i need wi real particles from j to realize real coagulation in
pairs, while real particles from j only need wj real particles from i to match them. That is, (wi–wj) real particles from i are
unable to find their coagulation partner from j, even though (wi–wj) real particles must coagulate according to the coagula-
tion rule. Following the coagulation rule, it is difficult to design a scheme to describe the resulting simulation particle k from
coagulation between i and j, where the size and weight of k should be specified to satisfy some basic laws such as mass
conservation.

We further derived a new coagulation rule for coagulation events between two differentially weighted simulation parti-
cles [25], where probability theory is introduced to consider real coagulation in pairs. Under this rule, for a coagulation event
between simulation particle i and j, it is imagined that each real particle from i undergoes a real coagulation event with a
probability of min (wi,wj)/wi, and each real particle from j does so with a probability of min (wi,wj)/wj. Thus, on average, only
min (wi,wj) real particles from i or j participate in real coagulation. The min (wi,wj) coagulation pairs are chosen randomly
from the set of all real particles i and j respectively. We call this the probabilistic coagulation rule.

According to the probabilistic coagulation rule, the number of real coagulation events for the i–j coagulation event is

X0 = min (wi,wj). Similarly, the mean coagulation rate of a real particle from i �h0iij

� �
is X0C0iij, where C0iij is the coagulation rate

of i for the i–j coagulation event in the probabilistic coagulation rule.
Whether the full or probabilistic coagulation rule is adopted, the coagulation rate of a real particle from the same simu-

lation particle should be the same �hi
ij ¼ �h0iij

� �
, that is, XCi

ij ¼ X0C0iij. So:
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C0iij ¼
X
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ij P Ci
ij: ð3Þ
The total coagulation rate of simulation particle i with any other simulation particles in the probabilistic coagulation rule
is calculated using:
C0i ¼
XNst

j¼1;i–j

C 0iij ¼
1

V2

XNst

j¼1;i–j

2bijwj maxðwi;wjÞ
wi þwj

� �
¼ 1

V2

XNst

j¼1;j–i

b0ij; ð4Þ
where b0ij is a normalized kernel that relates not only to the states (like volumes) but also to the weights of the two simu-
lation particles, b0ij ¼ 2bijwj maxðwi;wjÞ=ðwi þwjÞ.

2.2. The generalized MC method

MC methods can be divided into two classes according to the treatment of the time step. These are referred to as ‘‘event-
driven” and ‘‘time-driven” MC. In the paper, the two MC modes are generalized for the first time on the basis of the prob-
abilistic coagulation rule. Three key issues here are the choice of time step, the selection of coagulation pairs and the treat-
ment of a coagulation event.

2.2.1. The choice of time step
In event-driven MC, the time step is derived from mean-field rates of corresponding processes, i.e., the waiting time be-

tween two successive coagulation events for all simulation particles, as follows [26]:
DtED ¼ 2 V
XNst

i¼1

C 0i

 !,
¼ 2V

XNst

i¼1

XNst

j¼1;j–i

b0ij

,
; ð5Þ
where the factor ‘‘2” accounts for one coagulation event involving two simulation particles. In such a way there is one event
and only one event within the time step in event-driven MC.

Differently, in time-driven MC, the total number of events within a time step is generally far greater than 1, where the
time step is restricted to be less than or equal to the waiting time between two successive coagulation events for a simula-
tion particle, i.e., a simulation particle is restricted to participating in one coagulation event at most. The time step in time-
driven MC is usually calculated as follows [25]:
DtTD ¼ a max
8i

VC0i
� ��

; ð6Þ
where the multiplicative factor a usually has a very small value (such as 0.01) in order to ensure that several coagulation
events are uncoupled within a sufficiently small time step. In the open literature, a is chosen according to experience and
usually has different values in different cases depending on the particulars of the problem. What is more, a is generally
set to a constant value during MC simulation. In fact, an increase of a causes more computational expense and decreasing
accuracy. For example, for initial monodispersed particles, every particle initially has the same total coagulation rate. At that
moment, one must set a very small a to avoid too many coagulation events occurring within the step. During the evolution of
the particle population, the weight and size of simulation particles will differ increasingly. The number of particles having
similar total coagulation rates thus diminishes. In this condition, it should be possible to choose a comparatively large a to
accelerate simulation. Up to now, there has been no known method that allows us to specify an optimal a according to the
actual distribution of coagulation rates of the simulation particles. In this paper, a formula to determine a during dynamic
evolution is proposed. It is known that the number of coagulation events within a time step should be greater than or at least
equal to 1 and less than or at most equal to Nst/2, that is, the ratio of the number of coagulated simulation particles to the
whole simulation particle number p should be between 2/Nst and 1. If we specify this ratio p to be a constant value, then the
time interval for these coagulation events with number of (p � Nst/2) is p� Nst=2ð Þ � DtED ¼ pNst

PNst
i¼1 VC0i
� �.

. We can now
determine the time step in time-driven MC or the multiplicative factor a in Eq. (6) as follows:
DtTD ¼ pNst

XNst

i¼1

VC 0i
� �,

; or a ¼ pNst max
8i

C 0i
� � XNst

i¼1

C0i

,
; ð7Þ
Using Eq. (7) to determine the optimum time step, time-driven MC is capable of adjusting the time step during the dy-
namic evolution and avoiding the null event (like event-driven MC). It is also worth noting that no additional computational
cost is caused for Eq. (7) and, although another empirical parameter p is introduced, time-driven MC can perform with good
accuracy and efficiency when p is set to around 0.01 � 0.05. The idea can also be used in the s-PEMC (point ensemble Monte
Carlo) method proposed by Irizarry [23] to automatically determine the so-called coarse-graining factor.

2.2.2. The selection of coagulation pair(s)
On the basis of the total coagulation rate of each simulation particle, a jump Markov model for particle coagulation is then

constructed; that is, within a prescribed time step the interacting particle pair(s) is (are) selected with probability
b0ij

P
i

P
j;j–ib

0
ij

.
. Either the cumulative probabilities method or the acceptance-rejection method is used to realize the jump

Markov model.
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In event-driven MC using the cumulative probabilities method, the first coagulated simulation particle i is determined by:
VDtED

2

Xi�1

m¼1

C0m 6 r1 6
VDtED

2

Xi

m¼1

C 0m; ð8Þ
where r1 (and other random numbers in this paper) is a random number from an uniform distribution in the interval [0,1]. Its
coagulation partner j is then selected if the following relation:
VDtED

2

Xi�1

m¼1

C 0m þ
1

V2

Xj�1

m¼1;m–i

b0im

 !
< r1 6

VDtED

2

Xi�1

m¼1

C 0m þ
1

V2

Xj

m¼1;m–i

b0im

 !
; ð9Þ
is satisfied. When the acceptance-rejection method is used by the event-driven MC method, simulation particle i and j under-
go a coagulation event if a random number is less than the value b0ij max8k;8m b0km

� �	
, where i and j are randomly chosen from

the simulation particle population. This procedure is repeated until a particle pair is accepted.
In time-driven MC, each simulation particle is examined successively to determine whether the particle coagulates within

DtTD and V, and, if the particle coagulates, who is its partner. As for simulation particle i, the probability of a coagulation
event of i taking place within DtTD and V is an exponentially distributed random variable, that is:
P0E;iðDtTDÞ ¼ 1� expð�VC0iDtTD=2Þ: ð10Þ

Once a random number r2 is less than P0E;iðDtTDÞ, i is allowed to coagulate. Its partner j is then found based on the prob-

ability P0ij. In the cumulative probabilities method, the partner j is selected by means of the random number r2 from the
condition:
Xj�1

k¼1

P0ik 6 r2 6
Xj

k¼1

P0ik; where P0ij ¼ b0ij
XNst

k¼1;k–i

b0ik; j; k 2 ½1;Nst�
,

: ð11Þ
In the acceptance-rejection method, a randomly selected particle j is accepted as coagulation partner of i if the following
condition is met:
r3 6 b0ij max
8k;8m

b0km

� ��
: ð12Þ
Random numbers r3 are generated and this condition is checked until a particle pair is accepted.

2.2.3. The treatment of a coagulation event
At the end of a time step, all of the selected coagulation event(s) is(are) implemented according to the probabilistic coag-

ulation rule. As for the i–j coagulation event, two new simulation particles having new weights and/or volumes replace the
‘‘old” particles i and j. This is shown in Fig. 1 and is formulated by Eq. (13):
if wi – wj;
w�i ¼maxðwi;wjÞ �minðwi;wjÞ; v�i ¼ vkjwk¼maxðwi ;wjÞ;

w�j ¼minðwi;wjÞ; v�j ¼ v i þ v j;

(

if wi ¼ wj;
w�i ¼ wi=2; v�i ¼ v i þ v j;

w�j ¼ wj=2; v�j ¼ v i þ v j;

( ð13Þ
where the asterisk indicates a new value of weight or volume after the coagulation event.
Fig. 1. Treating a coagulation event under the probabilistic coagulation rule.
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The new unified differentially weighted MC method simultaneously has the characteristics of constant volume and con-
stant number. Depending on the particulars of the problem, either the time-driven mode or event-driven mode can be se-
lected. Generally speaking, the event-driven version is more accurate because events are fully uncoupled among different
time steps, while the time-driven mode is faster because many more events are simulated within one time step. Further-
more, it is emphasized that the popular equally weighted MCs such as the stepwise constant volume method [18,29] (an
event-driven MC) and the time-driven DSMC [30] are special versions of the differentially weighted MC. In the following text,
we refer only to the differentially weighted MC, where neither the event-driven mode nor the time-driven mode is
emphasized.

2.3. Composition-dependent weighting scheme

In the differentially weighted MC for two-component systems, the two individual component distributions, nx(vx, t) and
ny(vy, t), are divided into intervals by laws which can be freely adapted to the problems to be solved. Fig. 2 shows a schematic
of the two-dimensional internal variable space of the population of simulation particles. One grid point (p,q) in the vx–vy

plane represents a state (vx,p,vy,q) of particles having x-component volumes between v�x;p and vþx;p and y-component volumes
between v�y;p and vþy;p; the height of the cube located at the grid point (p,q) represents the number of real particles with state
(vx,p,vy,q), N(vx,p,vy,q). Particles at the same grid point of the two-dimensional space are considered to have similar dynamic
behavior and are represented by a certain number of weighted simulation particles. The mean weight of simulation particles
located at the grid point (p,q) is thus calculated as:
�wpqðvx;p; vy;qÞ ¼ Nðvx;p;vy;qÞ=Nsðvx;p;vy;qÞ; ð14Þ
where Ns(vx,p,vy,q) is the number of simulation particles located at the grid point (p,q). The number of simulation particles at
each grid point must be sufficient to minimize statistical noise. In this paper, Ns is prescribed to be more than a fixed min-
imum number Ns,min but less than a maximum number Ns,max. Grid points where the number density of real particles is high
can thus be designated to have numbers of simulation particles having larger mean weight values than grid points where the
number density is low.

2.4. Composition-dependent shift action

Based on the component-dependent weighting scheme, the differentially weighted MC method described above can be
utilized in the simulation of two-component coagulation processes. Since the history of each simulation particle can be
retained, the extension of the MC method from mono-component systems to multi-component systems is in theory only
to assign multiple internal variables (the volume of different chemical components in this paper) to individual simulation
particles. Although this direct extension does not increase the complexity of MC code, neither does it specify how the sim-
Fig. 2. Schematic illustration of the discretized two-dimensional internal variable space of simulation particle population.
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ulation particles are distributed over the multi-dimensional space of internal variables. It is well known that the statistical
error in the distribution function of one chemical composition, for example x-component, depends heavily on the square
root of Ns(vx,p), where Ns(vx,p) is the number of simulation particles having x-component with volumes between v�x;p and
vþx;p. It is therefore necessary to specify a minimum number of simulation particles in each size interval of each component
space, especially in less-populated regions, during the simulation of the coagulation process. At the same time, there are
many simulation particles in some size intervals of component space where the number concentrations are very high. In
view of the modest improvement in statistical precision and excessive computational cost, too many simulation particles in
a size interval of component space are unnecessary. It is therefore more efficient to specify a maximum number of simu-
lation particles in each size interval of component space. In summary, the simulation particles should be distributed over
the two-dimensional space of two compositions as homogeneously as possible during the two-component coagulation sim-
ulation by some additional action. We have proposed the ‘‘shift” action in differentially weighted MC methods for mono-
variate systems to reduce statistical noise [25]. The shift action is extended to the two-component coagulation simulation
in the following way:

When certain conditions are reached, for example when the number concentration of real particles is halved, the shift
action is performed, which restricts the number of simulation particles in predefined size intervals of each component space
to within these prescribed bounds (between Ns,min and Ns,max). First, the distribution of each component is sectionalized by
some prescribed laws, and then the number of simulation particles in the chosen intervals of each component space is
counted. In this paper, as for cases of initially discrete component distribution, the used size intervals of x-component space
are of the following general structure: vx,h = h � vx,min, h = 1, . . . ,20; vx,h = fsvx,h�1, h = 21, . . . ,100, and the section spacing fac-
tor fs depends on the maximum volume of x-component at the time instance and has an initial value of 1.08. The distribution
of the other component is also sectionalized in a similar manner; as for cases of initial polydisperse distribution, each com-
ponent volume is sectionalized into 100 size intervals between the minimum and maximum volumes by means of a loga-
rithmic law. The number of simulation particles in each size interval of each component space is required to exceed a
prescribed minimum Ns,min (for example 100 in this paper). A simple example is used to illustrate the action. Simulation par-
ticle A has an x-component volume vx,A, a y-component volume vy,A, a weight wA, and a total volume (vx,A + vy,A). The particle
is located at the grid point (p,q) of the two-component space, i.e., v�x;p 6 vx;A 6 vþx;p and v�y;q 6 vy;A 6 vþy;q. The numbers of sim-
ulation particles in size interval p of x-component space and size interval q of y-component space are Nsx,p and Nsy,q, respec-
tively. If min (Nsx,p, Nsy,q) < Ns,min, the simulation particle A is equally split into new simulation particles with an integer
number [Nf, min/min (Nsx,p,Nsy,q)]. These new particles have the same internal variables as their parent particle A and a weight
of wA/[Ns,min/min (Nsx,p,Nsy,q)]. One daughter particle replaces the position of its parent particle A, and other daughter parti-
cles are added to the array of simulation particles. The action does not change the compositional distributions, and it also
conserves the history of the particles but at the cost of more simulation particles.

If Nsx,p or Nsy,q is greater than a prescribed maximum Ns,max (1000 in this paper), each simulation particle in the grid point
(p,q) can be randomly removed with a probability of [max (Nsx,p,Nsy,q)–Ns,max]/max (Nsx,p,Nsy,q). In this paper, the removal
probability is prescribed to be less than 0.5 in order to avoid intense disturbance of simulation particle population. A random
process is used to decide whether simulation particle B is removed or not. If it is removed, the open position is taken by the
last particle in the simulation particle array. If not, the number weight of simulation particle B is corrected by a multiple
factor max (Nsx,p,Nsy,q)/Ns,max. If the total number of simulation particles is large enough, the random removal action does
not lead to a change in the distribution of each chemical composition or the joint distribution of two-components (on aver-
age). As a consequence, the removal action results in less simulation particles.

The action described above shifts some simulation particles from densely-populated regions of the two-dimensional com-
ponent space to less-populated regions by splitting some simulation particles in less-populated regions into more simulation
particles and randomly removing some simulation particles in densely-populated regions from the simulation. It is clear that
the shift action can only be used by the differentially weighted MC method, since the action necessitates consideration (and
recalculation) of the individual weights. The shift action overcomes the drawback of a stochastic approach as far as possible,
and at the same time the computational cost can be limited.
2.5. Smart bookkeeping technique

The computational cost of MC can further be reduced by the smart bookkeeping technique that is described in Ref.
[25]. The key idea of the bookkeeping technique is to update the total coagulation rate of each simulation particle after
each time step. Since there are only a few portions of simulation particles in time-driven mode or two simulation par-
ticles in event-driven mode related to coagulation event(s) within a time step, the total coagulation rate of a non-coag-
ulated simulation particle after the time step can be calculated by only updating the normalized kernels between the
non-coagulated simulation particles and the coagulated simulation particles (their weights and volumes may change
according to Eq. (13)). Double counting over all simulation particles is thus avoided during the simulation itself and
in fact only has to be performed at the very first time step. The smart bookkeeping technique in the differentially
weighted MC is similar in nature to the bookkeeping technique proposed by Laurenzi et al. [16]. By using an ‘‘aggrega-
tion table”, the latter significantly improves the computational efficiency of the event-driven MC for simulating multi-
component coagulation processes.
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3. Numerical test cases

In this section, the performance of the differentially weighted MC method is evaluated by testing it for two ideal cases for
which analytical solutions exist: an initially monodisperse distribution of each component and an initially polydisperse
distribution of each component. For these initial cases, analytical solutions for the two-component coagulation processes
are available in the case of simple coagulation kernels (constant [7,16,31], sum [16,32], and product [16]). The numerical
results from our MC method will be compared with the corresponding analytical solutions, showing that the differentially
weighting scheme and the component-dependent shift action are necessary to obtain an accurate MC solution for two-com-
ponent coagulation.

3.1. Two-component coagulation of two initial monodisperse components, sum kernel

The coagulation process starts from two individual monodisperse compositional distributions, that is, 10,000 particles
fully consisting of x-component and 20,000 particles fully consisting of y-component. For the theoretical and unrealistic case,
the initial volume of all particles is v0 = vx,0 = vy,0 = 1 (dimensionless), and the computational domain V is unit volume
(dimensionless). The sum (additive) coagulation kernel considered here has the form b(vi,vj) = bij = B(vi + vj), where B = 1.
The characteristic coagulation time is defined as scoag = 1/(Bv0N0) = 3.33 � 10�5 (dimensionless).

Two kinds of MC methods will be compared: the differentially weighted MC method and the non-weighted MC method.
The non-weighted MC method, which is described in Ref. [30], is de facto a special version of the differentially weighted one.
The non-weighted MC can keep the number of simulation particles constant in each step; however it does not allow the shift
action to be adopted. The non-weighted MC can be considered as a typical representative of MC methods available in the
open literature. The non-weighted MC starts with 20,000 simulation particles and ends with around 10,900 simulation par-
ticles due to number depletion caused by the coagulation process; the differentially weighted MC starts with 1000 simula-
tion particles and ends with 9300 simulation particles as a direct result of the component-dependent shift action. The CPU
time consumed by the non-weighted and differentially weighted methods for one MC simulation is around 144 s and 214 s,
respectively on a computer equipped with an Inter (R) Core (TM) 2 Quad CPU Q9300 @ 2.50 GHz and 4 GB memory. The non-
weighted MC is faster (1) because the non-weighted MC is factually based on the full coagulation rule, i.e., each real particle
from coagulated simulation particles participates in the real coagulation process. Under the probabilistic coagulation rule,
however, only some of the real particles coagulate: in other words, there are some ‘‘null” real coagulation events. The
non-weighted MC based on the full coagulation rule thus evolves faster than the differentially weighted MC based on the
probabilistic coagulation rule; and (2) because the shift action adopted by the differentially weighted MC consumes some
CPU time. The differentially weighted MC gives something (computational efficiency) and gets something (computational
precision) in return.

The moments of the number density functionn(vx,vy, t) are defined as:
Mi;jðtÞ ¼
Z 1

0

Z 1

0
v i

xv
j
ynðvx;vy; tÞdvxdvy; ð15Þ
and the evolution of the moments is shown in Fig. 3. The numerical results from the non-weighted and differentially
weighted MC methods (see Fig. 3(a)) agree with the analytical solutions [16]. However, there are subtle differences in the
behavior of M1,1 at short times (t < 0.1scoag) from the analytical solutions and MC solutions. In fact, analytical solutions from
the deterministic equation (1) describe the average behavior of the two-component coagulation, while MC simulations rep-
resent a single experiment having innate fluctuation; and deterministic solutions are exactly valid only for an ‘‘infinite” sys-
tem [16], while 30,000 real particles and less simulation particles are insufficient to simulate the behavior of mixing between
components (like M1,1) in an infinite system.

From the calculated moments (shown in Fig. 3(a)) and their relative errors with respect to analytical solutions (shown in
Fig. 3(b)), it is difficult to evaluate the performance of different MC methods. In order to quantify numerical errors from the
different MC methods, we calculated the root mean squared error (RMSE) of the moments for 10 MC simulations with re-
spect to the analytical solution as follows:
rMij
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where Q is the number of MC repetitions (Q = 10); the superscript ‘‘AS” represents the analytical solution and ‘‘MC (k)” means
the numerical result of the kth MC simulation. These errors as a function of the normalized time are plotted in Fig. 4. It is
clear that the solid lines (representing the differentially weighted method) on the whole are below the dotted lines
(representing the non-weighted method). The differentially weighted method is more accurate than the non-weighted
method, especially for these higher-order moments (like M1,1, M0,2, M2,0) when t > scoag, which should be attributed to the
fact that these equally weighted simulation particles are not capable of representing the increasingly polydispersed and non-
isotropic compositional distributions as time evolves.

Even when t < scoag, the differentially weighted method predicts the two-component coagulation process more accurately
than the non-weighted method, although this is not as evident when comparing the moments and their relative error.



Fig. 3. Two initially monodisperse distributions in the case of a sum kernel: comparison between the analytical solutions [16] and numerical results from
two MC methods for the evolution of the moments of two-component distribution. (a) Mij; (b) MMC

ij =MAS
i;j the ratio, where the superscript ‘‘MC” represents

the numerical result of the two MC methods and ‘‘AS” the analytical solution.

Fig. 4. Two initially monodisperse distributions in the case of a sum kernel: root mean squared errors of several moments to the analytical solution from 10
MC simulations.

H. Zhao et al. / Journal of Computational Physics 229 (2010) 6931–6945 6939
Exemplary particle size distributions, Fig. 5, show that the non-weighted method exhibits good performance only in the
densely-populated regions. However, it exhibits greater fluctuations in less-frequently encountered particles (for example
larger aggregates having nonisotropic compositional distribution). By contrast, the differentially weighted method is capable
of tracking the largest aggregates which have very low probabilities of occurrence.

To evaluate the relative performance of the MC methods with respect to the compositional and size distribution on a
quantitative basis, we also computed the standard deviations of distributions as follows:



Fig. 5. Normalized particle size distribution n(x,y, t)/n(x,y,0) at (a) t = 0.14scoag (b) t = 0.24scoag (c) t = 0.5scoag.
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where nx+y(v) is the particle size distribution function, nx(vx) is the x-component distribution function and ny(vy) is the y-
component distribution function; S is the number of size intervals in particle size space, Sx is the number of size intervals
in x-component space and Sy in y-component space. The relative errors of distribution functions are normalized by the max-
imum value of either the MC results or the analytical solution because in some size intervals MC results differ greatly from
analytical solutions, which would mask the overall error too heavily. In this case, the standard deviations of distributions in
particle size space (v0,20v0) and bi-component space (vx,0,10vx,0) � (vy,0,10vy,0) are shown in Fig. 6. When t < 0.1scoag, it is
difficult to distinguish the advantages and disadvantages of the two MC methods for distribution functions; however, it is
easy to determine from the quantitative standard deviations of distribution functions that the differentially weighted meth-
od simulates size distribution and bi-component distribution more accurately when t > 0.1scoag. The good performance of the
differentially weighted method is directly due to the differentially weighting scheme and the composition-dependent shift
action, which are capable of distributing a limited number of simulation particles over the simulated multi-dimensional
space as homogeneously as possible. Note that the better precision of the differentially weighted MC is achieved under
the condition that its simulation particle number is always less at same time instants than the number of simulation parti-
cles in the non-weighted method.

3.2. Two-component coagulation of two initial polydispersed components, constant kernel

In this case the initial number density function satisfies:
Fig. 6.
compos
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� vy
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where N0 is the total number concentration of real particles (1010 in this simulation, dimensionless); vx,0 and vy,0 are the ini-
tial geometric mean volume of x-component and y-component in a particle (vx,0 = vy,0 = 0.5 in this simulation, dimension-
less). The coagulation kernel is size-independent, b(vi,vj) = bij = A = 10�10 (dimensionless). In this case, two versions of the
differentially weighted MC are numerically implemented: the MC that adopts the shift action (shift MC) and the MC that
does not adopt the shift action (no-shift MC). The two MC simulations start with 10,204 simulation particles. The no-shift
MC keeps the simulation particle number constant during the simulation, however the shift MC will increase the simulation
particle number up to around 35,000 by the end of coagulation process (t = 10,000scoag, where the dimensionless scoag = 1/
(AN0) = 1).

As for the moments of n(vx,vy, t), the agreement between the results of either MC and analytical solutions is very good. At
first sight, the evolution of the three moments (M0,0,M0,1,M1,1) along with t is identical to the analytical solution as shown in
Fig. 7(a). However, when comparing the relative error of these moments (Fig. 7(b)), the error in the shift MC method is great-
er than that in the no-shift MC method. In the shift action, some simulation particles are randomly removed in order to re-
strict the simulation particle number in each size interval of each component space to within prescribed bounds, which
results in small deviations in these moments.

The root mean squared errors of these moments for ten MC simulations as a function of time with respect to the analytical
solution are shown in Fig. 8. In the early stage of MC simulations, the two versions of the differentially weighted method
show similar accuracy for these moments because the first shift action occurs at about t = 2.12scoag. After that, the shift
MC shows increasing numerical errors because the shift action continuously introduces random noise to the population
of simulation particles.
Two initially monodisperse distributions in the case of a sum kernel: standard deviations of the particle size distribution and the combined
itional distribution from 10 MC simulations.



Fig. 7. Two initial polydispersed components in the case of a constant kernel: comparison between the analytical solutions [7] and numerical results from
two MC methods for the evolution of the moments. (a) Mi,j; (b) the ratio MMC
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Fig. 8. Two initial polydispersed components in the case of a constant kernel: root mean squared errors of several moments from 10 MC simulations.
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Although the shift action adopted in the differentially weighted MC method apparently does not help to improve the
accuracy of the global moments, the method is very useful for obtaining more exact results in the less-populated regions
in the compositional distribution. As shown in Fig. 9, the shift MC method is capable of predicting the compositional
Fig. 9. The time-dependent-component distribution for two initial polydispersed components in the case of a constant kernel: comparison between the
analytical solutions [7] and numerical results from (a) the differentially weighted MC that adopts the shift action; and (b) the differentially weighted MC
that does not adopt the shift action.
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distributions even when the degree of coagulation is very high (in Fig. 9(a)). The four time instants, t = 5scoag, 25scoag, 100scoag

and 1000scoag, correspond to the coagulation degree of around 70.48%, 92.35%, 97.98% and 99.80%, respectively. It is clear
that the no-shift MC method leads to larger statistical noise for these less-populated component regions (for example,
Fig. 10. Standard deviations of the particle size distribution and the combined compositional distribution from 10 MC simulations for two initial
polydispersed components in the case of a constant kernel.

Fig. 11. Normalized simulation and real particle numbers, Nsx(vx)/Nst and Nxvx/N(t) at t = 25scoag.

Fig. 12. Contour plot of the logarithm of the normalized two-dimensional compositional distribution function, log10[n(vx,vy, t)/n(vx,vy,0)], at t = 25scoag (a)
analytical solution [7]; (b) the differentially weighted MC method that adopts the shift action; (c) the differentially weighted MC method that does not
adopt the shift action.
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x < 0.1) when the system has experienced long-term evolution (t > 5scoag). The standard deviations of compositional distri-
butions, which are shown in Fig. 10, further prove this point. When t < 5scoag, the shift and no-shift MCs show similar accu-
racy in compositional distribution; however, the performance difference between two MCs begins to appear when t > 5scoag.
The shift MC exhibits a smaller standard deviation of compositional distributions when t > 5scoag. In fact, the better perfor-
mance of the shift MC method is directly ascribed to the fact that the simulation particles are distributed over the two-
dimensional component distribution during the simulation as homogeneously as possible. Fig. 11 shows the composition-
dependent simulation particle number at t = 25scoag. It is found that the shift MC method still assigns appropriate numbers
of simulation particles to represent these less-populated regions (the two edges of compositional distributions). By contrast,
if the simulation particles are freely evolved (in the no-shift MC method), most of the simulation particles are still distributed
in these densely-populated regions where the number density is high. The shift action also supplies enough information for a
two-dimension contour plot of the component distribution to be calculated (Fig. 12), whereas the non-shift method does not
lead to an acceptable contour plot.
4. Conclusions

An intrinsic characteristic of the direct simulation Monte Carlo method that has contributed to its increased applicability
in complex dispersed systems is its ability to deal with multivariate problems in a simple and straightforward manner. As for
multi-component coagulation processes, the available MC methods which only assign multiple internal variables to individ-
ual simulation particles have numerical difficulties such as large statistical noise. At the same time, however, MC methods
which treat multi-component coagulation as chemical reactions of many species overcome these numerical difficulties at the
cost of increasing complexity. In this paper, a robust, accurate and smart stochastic algorithm is introduced which exhibits
an optimal combination of high numerical accuracy and low computational effort. It is based on a new generalized differen-
tially weighted MC method for monovariate systems, which unifies event-driven mode and time-driven mode, has the char-
acteristics of constant volume and constant number (between two shift actions), and is capable of using so-called smart
bookkeeping to improve computational efficiency. The new distinguishing feature of the differentially weighted MC for
bi-component coagulation is the so-called component-dependent shift action, which restricts the number of simulation par-
ticles for each size interval of each component space to within prescribed bounds during simulation. From a comparison of
the differentially weighted and non-weighted MCs with a benchmark solution (two initially monodisperse distributions in
the case of a sum kernel), it is found that the differentially weighted MC shows smaller errors for the moments of compo-
sitional distributions in the more advanced stages of coagulation and simulates size distribution and compositional distri-
butions more accurately even in the intial stage of coagulation, while it performs less efficiently than the non-weighted
MC. Furthermore, comparison between an analytical solution and numerical results from the differentially weighted method
either with or without the shift action showed that, although it does not improve the accuracy of global distribution prop-
erties such as moments, the shift action is necessary in order to obtain information about sparsely populated regions of the
distribution function.
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